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• ChatGPT serves in the order of 10 million inference queries per day

• 2024’s growth of AI unit at Microsoft is “all inference”

• Interactive workloads have strict latency requirements

Real-time Inference Requests are Flooding Datacenters
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• Users submit jobs, or Directed Acyclic Graphs (DAG), of 
operations to the cluster.

• Along with the input data, this specifies what the cluster 
should do, and how to obtain the result.

What is scheduling?
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Scheduling matters - Example
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• Some operations can run in parallel. This saves time.

• Edges in DAGs denote data dependencies. If two 
consecutive nodes are on different servers, they 
need to exchange data. This transfers can get quite 
large.

• In this example:
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• When scheduling flows of jobs, other jobs in the flow 
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Scheduling matters - Example
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Existing schedulers - Network Congestion

Learning/History based
• Gandiva[OSDI’18]: learns isolated network costs

• Optimus[EuroSys’18]: assumes no congestion

• Decima[SIGCOMM’19]: does not include link sharing 
status in learning inputs

• Tiresias[NSDI’19]: assumes no congestion

• Themis[NSDI’20]: assumes no congestion

• Pollux[OSDI’21]: assumes no congestion

Model based
• Sparrow[SOSP’13]: assumes no congestion

• Tetris[SIGCOMM’14]: assumes no congestion

• FlexFlow[SysML’18]: assumes no congestion

12
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Taking the network into account is hard, predicting network 
queueing is even more challenging
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One approach: Queueing models

Advantages:

• Pollaczek–Khinchine formula to predict 
queueing delays at different parts in the 
network

Challenges:

• Strong arrival process assumptions

• Incompatible with intricate heuristics

13
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Solution: Stochastic scheduling!
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• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation
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Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables
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• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation
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Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables
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In practice, task 2 completes on server b when:

+Task 1 completed, then
+Data was transferred if needed, then
+Server b finished all previous jobs, then
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See the paper or nona.csail.mit.edu for more details
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Graph Contraction
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• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.
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• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.
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Evaluation

23



55

Setup

24

• Workload consists in contracted versions of AlexNet, ResNet18, VGG16, Densenet, and GPT2
+ Background traffic and compute tasks

• We use a simulator from Decima [SIGCOMM’19], a Reinforcement Learning (RL)-based 
scheduler, originally made for Spark

• We compare Nona with 
• Decima
• Spark’s Fair Scheduler
• Opportunistic
• Hand picked expert solutions

• 80-server cluster
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• Schedulers should consider network queueing and asymmetry in jobs’ DAGs:
• Nona achieves up to 350x better JCT than previous works by including network delays in 

the decision-making

• ML operation graphs can be largely compacted to simplify scheduling

• Stochastic scheduling allows moving the complexity of the problem offline for 
low latency scheduling

Conclusion

26
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