
Nona: A Stochastic Congestion-Aware Job
Scheduler for Real-Time Inference Queries

Benoit Pit-Claudel*, Derya Malak†, Alejandro Cohen‡, Muriel Médard*, Manya Ghobadi*

* MIT, † EURECOM, ‡ Technion. Nov 28th, 2024



2

• ChatGPT serves in the order of 10 million inference queries per day

• 2024’s growth of AI unit at Microsoft is “all inference”

• Interactive workloads have strict latency requirements

Real-time Inference Requests are Flooding Datacenters

2



3

• Users submit jobs, or Directed Acyclic Graphs (DAG), of 
operations to the cluster.

• Along with the input data, this specifies what the cluster 
should do, and how to obtain the result.

What is scheduling?

1

2

3

4Sum Reduce

Matrix Multiplication

Non Linear operation 
(e.g. ReLU)

3



4

• Users submit jobs, or Directed Acyclic Graphs (DAG), of 
operations to the cluster.

• Along with the input data, this specifies what the cluster 
should do, and how to obtain the result.

• Scheduling is mapping these operations on compute 
resources.

What is scheduling?

1

2

3

4Sum Reduce

Matrix Multiplication

Non Linear operation 
(e.g. ReLU)

3

a b

8Gbps



5

• Users submit jobs, or Directed Acyclic Graphs (DAG), of 
operations to the cluster.

• Along with the input data, this specifies what the cluster 
should do, and how to obtain the result.

• Scheduling is mapping these operations on compute 
resources.

What is scheduling?

1

2

3

4Sum Reduce

Matrix Multiplication

Non Linear operation 
(e.g. ReLU)

3

a b

8Gbps



6

Scheduling matters - Example

4

1

2

3

4 1ms

10ms

10ms

1ms

10MB 10MB

1MB1MB

• Some operations can run in parallel. This saves time.

• Edges in DAGs denote data dependencies. If two 
consecutive nodes are on different servers, they 
need to exchange data. This transfers can get quite 
large.

• In this example:

a b

8Gbps



7

Scheduling matters - Example

5

1

2

3

4 1ms

10ms

10ms

1ms

• Some operations can run in parallel. This saves time.

• Edges in DAGs denote data dependencies. If two 
consecutive nodes are on different servers, they 
need to exchange data. This transfers can get quite 
large.

• In this example:
• Place everything on the same server: 22 ms

a b

8Gbps



8

• Some operations can run in parallel. This saves time.

• Edges in DAGs denote data dependencies. If two 
consecutive nodes are on different servers, they 
need to exchange data. This transfers can get quite 
large.

• In this example:
• Place everything on the same server: 22 ms
• Distribute (network-unaware): 32 ms

Scheduling matters - Example

6

1

2

3

4 1ms

10ms

10ms

1ms

10MB 10MB

1MB1MB

a b

8Gbps



9

Scheduling matters - Example

7

1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

• Some operations can run in parallel. This saves time.

• Edges in DAGs denote data dependencies. If two 
consecutive nodes are on different servers, they 
need to exchange data. This transfers can get quite 
large.

• In this example:
• Place everything on the same server: 22 ms
• Distribute (network-unaware): 32 ms
• Distribute (network-aware): 14 ms

a b

8Gbps



10

Scheduling matters - Example

8

• Datacenter is shared with other applications 1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

a b

8Gbps



11

Scheduling matters - Example

8

• Datacenter is shared with other applications 1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

100 ms

a b

8Gbps



12

Scheduling matters - Example

8

• Datacenter is shared with other applications 1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

100 ms

a b

8Gbps



13

Scheduling matters - Example

9

1

2

3

4 1ms

10ms

10ms

1ms

100 ms

• Datacenter is shared with other applications

a b

8Gbps



14

Scheduling matters - Example

10

• Datacenter is shared with other applications

• When scheduling flows of jobs, other jobs in the flow 
contribute to queueing delay

1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

6 ms

a b

8Gbps



15

Scheduling matters - Example

10

• Datacenter is shared with other applications

• When scheduling flows of jobs, other jobs in the flow 
contribute to queueing delay

1

2

3

4 1ms

10ms

10ms

1ms

1MB1MB

6 ms

Queueing delay should be taken into 
account when making scheduling decisions

a b

8Gbps



16

Scheduling matters - Example

11

• The actual optimum is somewhere between different allocations

1

2

3

4

Scheduler

30%

1

2

3

4

70%



17

Existing schedulers - Network Congestion

Learning/History based
• Gandiva[OSDI’18]: learns isolated network costs

• Optimus[EuroSys’18]: assumes no congestion

• Decima[SIGCOMM’19]: does not include link sharing 
status in learning inputs

• Tiresias[NSDI’19]: assumes no congestion

• Themis[NSDI’20]: assumes no congestion

• Pollux[OSDI’21]: assumes no congestion

Model based
• Sparrow[SOSP’13]: assumes no congestion

• Tetris[SIGCOMM’14]: assumes no congestion

• FlexFlow[SysML’18]: assumes no congestion

12



18

Existing schedulers - Network Congestion

Learning/History based
• Gandiva[OSDI’18]: learns isolated network costs

• Optimus[EuroSys’18]: assumes no congestion

• Decima[SIGCOMM’19]: does not include link sharing 
status in learning inputs

• Tiresias[NSDI’19]: assumes no congestion

• Themis[NSDI’20]: assumes no congestion

• Pollux[OSDI’21]: assumes no congestion

Model based
• Sparrow[SOSP’13]: assumes no congestion

• Tetris[SIGCOMM’14]: assumes no congestion

• FlexFlow[SysML’18]: assumes no congestion

12

Taking the network into account is hard, predicting network 
queueing is even more challenging



19

One approach: Queueing models

Advantages:

• Pollaczek–Khinchine formula to predict 
queueing delays at different parts in the 
network

Challenges:

• Strong arrival process assumptions

• Incompatible with intricate heuristics

13



20

One approach: Queueing models

Advantages:

• Pollaczek–Khinchine formula to predict 
queueing delays at different parts in the 
network

Challenges:

• Strong arrival process assumptions

• Incompatible with intricate heuristics

13

Solution: Stochastic scheduling!



21

Nona’s System Model

14

Users



22

Nona’s System Model

14

Scheduler

Flow of
inference queries

Users

GPT

GPT

Inception

DenseNet

ResNet

GPT



23

Nona’s System Model

14

Storage

Scheduler

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT



24

Nona’s System Model

14

Storage

Scheduler

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

1

2

3

4p1,2 =

0.7
0.1
0.1
0.1
0

: 1 + 2 + 3 + 4
: 1 + 2 + 4 | 3
: 1 + 2 | 3 + 4
: 1 + 3 | 2 + 4
: 1 + 3 + 4 | 2



25

Nona’s System Model

14

Storage

Scheduler

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

1

2

3

4p1,2 =

0.7
0.1
0.1
0.1
0

: 1 + 2 + 3 + 4
: 1 + 2 + 4 | 3
: 1 + 2 | 3 + 4
: 1 + 3 | 2 + 4
: 1 + 3 + 4 | 2



26

Nona’s System Model

14

Storage

Scheduler

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

1

2

3

4p1,2 =

0.7
0.1
0.1
0.1
0

: 1 + 2 + 3 + 4
: 1 + 2 + 4 | 3
: 1 + 2 | 3 + 4
: 1 + 3 | 2 + 4
: 1 + 3 + 4 | 2



27

Nona’s System Model

14
Offline Online

Storage

Scheduler

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT



28

Nona’s System Model

14
Offline Online

Storage

SchedulerOptimization

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT



29

Nona’s System Model

14
Offline Online

Storage

SchedulerOptimization

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

Available models’ DAGs: GPT, 
Inception, ResNet, DenseNet



30

Nona’s System Model

14
Offline Online

Storage

SchedulerOptimization

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

Available models’ DAGs: GPT, 
Inception, ResNet, DenseNet

Estimated model 
demand



31

Nona’s System Model

14
Offline Online

Storage

SchedulerOptimization

Flow of
inference queries

Users

Task assignment 
probabilities

GPT

GPT

Inception

DenseNet

ResNet

GPT

Available models’ DAGs: GPT, 
Inception, ResNet, DenseNet

Cluster information 
(number of servers, 

link speeds, …)

Estimated model 
demand



32

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables



33

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:



34

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:

+Task 1 completed, then



35

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:

+Task 1 completed, then
+Data was transferred if needed, then



36

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:

+Task 1 completed, then
+Data was transferred if needed, then
+Server b finished all previous jobs, then



37

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:

+Task 1 completed, then
+Data was transferred if needed, then
+Server b finished all previous jobs, then
+Task 2 finished running



38

• We want to determine the optimal assignment probability distributions for each task in each 
job:

Nona’s Optimization formulation

15

Minimize: Job completion time 
Subject to: communications, computing, flow, and scheduling constraints,

auxiliary variables

1

2 b
In practice, task 2 completes on server b when:

+Task 1 completed, then
+Data was transferred if needed, then
+Server b finished all previous jobs, then
+Task 2 finished running

See the paper or nona.csail.mit.edu for more details



39

Graph Contraction

16

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

1 2 3

4 5

10 16

7

11

13

15

8

12

14



40

Graph Contraction

16

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

1 2 3

4 5

10 16

7

11

13

15

8

12

14



41

Graph Contraction

17

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

1 2 3

4 5

10 16

7

11

13+
14

15

8

12



42

Graph Contraction

17

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

1 2 3

4 5

10 16

7

11

13+
14

15

8

12



43

Graph Contraction

18

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

1 2 3

4 5

16

7

11

13+
14

1512

8+
10



44

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



45

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



46

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



47

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



48

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



49

Graph Contraction

19

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted, contract all edges a → b where
• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

4 5

8+10 161+2+3 7+11

12+13
+14+15



50

Graph Contraction

20

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted:
• Contract all edges a → b where

• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

DensetNet121



51

Graph Contraction

20

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted:
• Contract all edges a → b where

• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

DensetNet121



52

Graph Contraction

21

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted:
• Contract all edges a → b where

• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

DensetNet121



53

Graph Contraction

22

• To reduce the number of tasks, we contract tasks that do not gain from being run in parallel.

• While the graph can be further contracted:
• Contract all edges a → b where

• All input nodes of b are also input nodes of a, and
• All output nodes of a are also output nodes of b.

DensetNet121



54

Evaluation

23



55

Setup

24

• Workload consists in contracted versions of AlexNet, ResNet18, VGG16, Densenet, and GPT2
+ Background traffic and compute tasks

• We use a simulator from Decima [SIGCOMM’19], a Reinforcement Learning (RL)-based 
scheduler, originally made for Spark

• We compare Nona with 
• Decima
• Spark’s Fair Scheduler
• Opportunistic
• Hand picked expert solutions

• 80-server cluster



56

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



57

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



58

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



59

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



60

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



61

Impact of Job Arrival Rate

25

0.01

0.1

1

10

100

20 35 50 60 70 80 90 95

JC
T(

m
s)

Average System Load (%)

10

100

1000

10000

100000

20 35 50 60 70 80 90 95

Average System Load (%)

Expert Nona Opportunistic Spark Decima

(a) Average over all jobs (b) Average over foreground jobs



62

• Schedulers should consider network queueing and asymmetry in jobs’ DAGs:
• Nona achieves up to 350x better JCT than previous works by including network delays in 

the decision-making

• ML operation graphs can be largely compacted to simplify scheduling

• Stochastic scheduling allows moving the complexity of the problem offline for 
low latency scheduling

Conclusion

26


	Nona: A Stochastic Congestion-Aware Job�Scheduler for Real-Time Inference Queries
	Real-time Inference Requests are Flooding Datacenters
	What is scheduling?
	What is scheduling?
	What is scheduling?
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Scheduling matters - Example
	Existing schedulers - Network Congestion
	Existing schedulers - Network Congestion
	One approach: Queueing models
	One approach: Queueing models
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s System Model
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Nona’s Optimization formulation
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Graph Contraction
	Evaluation
	Setup
	Impact of Job Arrival Rate
	Impact of Job Arrival Rate
	Impact of Job Arrival Rate
	Impact of Job Arrival Rate
	Impact of Job Arrival Rate
	Impact of Job Arrival Rate
	Conclusion

